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Using the three-dimensional dynamical theory of elasticity, the asymptotic method [1, 2] is used to derive two-dimensional equations 
and elasticity relations for a packet with an arbitrary anisotropy and arrangement of the layers. It is assumed that the contact 
between layers is ideal and the packet is subject to stresses on the face surfaces with certain boundary conditions at the ends. It 
is also assumed that in addition to the usual small parameter e = h/L ,~ 1 for a long-wave approximation (h is the half-thickness 
and L is the scale of the process in a longitudinal direction), the ratios of the elastic moduli in different directions in each layer 
can generate additional small parameters of the form e p, p > 0, ~ ~ +0. Similar contrasting differences are permitted between 
groups of layers. The results are classified in terms of the contrast characteristics and types of anisotropy. © 1999 Elsevier Science 
Ltd. All rights reserved. 

The main purpose of this paper is to obtain an asymptotically exact description of the dynamic internal 
stress-strain state (SSS) of a thin packet of anisotropic layers with contrasting properties. These include 
a large difference between the elastic properties in the different anisotropy directions within any layer 
(the existence of contrasting directions) as well as a large difference between layers or groups of layers. 

The first property is typical of modern heavy-duty unidirectional composites, where the moduli of 
the carbon or boron-carbon fibres in a layer are substantially greater than the moduli of the matrix [3], 
resulting in complex properties of the packet as a whole. The many attempts that have been made to 
describe them mathematically reduce essentially to the use of high-order deformation theories which 
give rise to technical difficulties of their own [4-6]. In terms of asymptotic behaviour, it means that one 
must allow for an increasingly large number of terms (of the order of four, six or more) in the respective 
asymptotic series of standard form (as many as in the non-contrasting case). However it would seem 
natural to begin with a long-wave approximation, confining ourselves to one or two terms of the series, 
and then correcting them by introducing extra small parameters (such as the ratios of the elastic moduli 
in different directions). This is what we do here. 

The second property is frequently found in panels of composite materials with outer supporting layers 
and a relatively soft filler [3, 7-11], so that the contrast manifests itself on going from layer to layer. 
The hypothesis method is widely used in the theory of laminated structures with a small physical 
parameter  of this kind [7, 12, 13]. Asymptotic methods were developed for the case of isotropic or 
transversally-isotropic materials in [14].1: 

1. P H Y S I C A L  AND M A T H E M A T I C A L  S T A T E M E N T  OF T H E  P R O B L E M  

Let the j th  layer occupy the region f2 x [zj, zj+ t] (J = 1, 2 . . . . .  N) in a Cartesian system of coordinates 
x = i,,x~, x3 = z. We assume that the linearly elastic material of the layer possesses general anisotropy 
and the three-dimensional Hooke's  law corresponds to a sixth-order stiffness matrix Gj containing 21 
independent elastic constants. We will denote the density of the material by pj. 

The layers adhere perfectly to the contact surfaces and are arbitrarily and asymmetrically arranged 
in a packet. 

For certain boundary conditions at the ends Of~ x [z-, z÷], z I -~ Z- ,  ZN+ l -~ Z +, the packet is assumed 
to be subject to the effect of distributed stresses on the exposed surfaces, so that the characteristic scale 

tPn'kl. Mat. Mekh. Vol. 63, No. 1, pp. 102-110, 1999. 
:~See also LOZKHIN, O. B., Some problems of the axisymmetric bending of three-layer shells of revolution. Candidate 
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L of the dynamic process in a longitudinal plane is much greater than the thickness of the packet 
2h = hi + h2 + • • • + h/v, hj = zj+l - zp that is, ~ = h L  -1 ~ 1 is a small geometrical parameter. 

We will denote the characteristic values of the elastic modulus and density (the largest values in the 
packet, for instance) by E0 and P0. 

We will further assume that the coordinates x, z are normalized to L and h, and that the quantities 
Gj and pj are normalized to E0 and P0, respectively. The dimensionless time t is obtained by normalizing 
to a certain characteristic scale T = z~- l lc~ ,  c20 = E0p~ l. The loads on the lateral surfaces are given in 
the form 

= e-l'c~(x,t) (z = : ) .  O~3 =O;:(x,t), O.3 

For unitary subscripts of the stresses and strains the subscripts 1, 2, 3 in the stiffness matrix G 2 below 
will correspond to the subscripts 11, 22, 33, and the subscripts 4, 5, 6 will correspond to the subscripts 
23, 13, 12 for shear stresses and strains. 

It will also be assumed for the stiffnesses that 

G~,, =~Pg~, (m=3,4,5)~ G~, = e~q,,,,, j (n=1,6,2),  

where g)mn = O(1), e ~ +0. The largest of the powersp and q (p, q > 0) are chosen at the intersection 
of  the ruth rows and nth columns. 

We will begin by confining ourselves to an investigation of p, q -- 1, 2, 3. As a rule, this is adequate 
in thin bodies, e < 10 -1, and for a range of real values of the parameters. 

Thus, the displacements, strains and stresses in the layers satisfy the equations of the three-dimensional 
dynamic theory of elasticity, Hooke's  law, the conditions for total adhesion of the layers, the specified 
loads on the faces and certain boundary conditions at the end of the packet. 

For an internal SSS of the packet (far away from the ends) the displacements U = i~Ua, U3 = W, 
strains e,~ and stresses I ~  will be sought in the form of asymptotic series in powers of e (j, the number 
of the layer, is omltted in obvious causes) 

U = he~'(u ° + eu I + ...), W = hE~t(w ° + ~w ~ + ...) 

o + ~O~ +...) ~ = ~o(~.~ + ~ +...), z~  = ~o~ (o~ 

with the different superscripts ~., p, O, ~, x corresponding to the choice of the (p, q)-model of the 
stiffnesses. We obtain the following orders and recurrence relations for the dimensionless quantities 

~ = (Bau p + 31~ua)"(O = Z,+ I), e~z = 3zw"(O = g) (i.i) 

7~z = ~zu~ +e-x + Op ws+°-~-~ (O = min(L, IX + 1)) 

g E ) s+I f -q -~ . - I  ~ .  e.s+lc-p-t t  
O'g -----(o%lEil + g 8 6 Y I 2  + 82 22 a-$~3C'zz + ( g 8 4 7 2 z  +g85V~z) "~+r-p-g (1.2) 

O c = m i n ( q + ~ , + i , p + g , p + ~ ) ;  6 =  1,2 ..... 6) 

~ ,.~S+~o-t¢-I ~ r e s + k o - ~  2 s+~0+2~-4-~ ,  
13"~ , , : , ~  = p j3 t u 

~) ~ s + p O - ~ - | . .  % ~ s + p o - ~  [3t,0z Uz,.,ez = pjo32w s+la° +2"c-4-~ (1.3) 

(k o ~ min(k,r),  go -= min(p.,~:)) 

The elasticity relations (1.1), (1.2) and Eqs (1.3) are supplemented by the conditions on the contact 
surfaces between layers and the faces 

-- ees-tCj+l s - g j  ,~.s - It j+ I 
Z = Zj+ I : 0 " ~  l~j -- vff,  lj+ I . (~ZZj = UZZ)+I 

u~ -x' = u '-x'+' w~ - p '  w;';~ '+' (1.4) IX./+ l ' 

s ~: -I  s o:l: ~0  
Z = Z :1: : Oaz:l: = 17¢t~s+1%:, tJzz~: = - s + ~  

where the superscripts -7 and 1, N + 1 are identified for brevity; j = 2, 3 . . . . .  N - 1, and 6~ m is the 
Kronecker delta. 
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2. T H E  B A S I S  M O D E L  O F  A P A C K E T  O F  (0,  0 ) - L A Y E R S  

This model was studied in detail [16-18], but it is interesting to take it as a basis for comparison with 
other models. We will give the main expressions and orders for the principal terms (s = 0) 

x=0 ,  ~t=--4, Z,=-3 

u ° = u(x,t)-zVw, w ° = w(x,t), V = ia~ ~ (2.1) 

¢ ~  = x~( l" j )u  °, I¢ = -2 (o~l~ = 11,12,22) (2.2) 

Xll(F) = (TJ i c3, + YI6b2 )i,  + (y16 a,  + y , 2 b 2 ) i  2 (1 ~ 2 )  

X ,2 (F)  ffi (TI6~, + T6662 )i, + (Y66 b, + T2662 )i  2 

+ z°Vw)+ 

+ (  (z + z~" ) Vw), ~:=-I (2.3) + (z 7 - z)a~ u 2 

O~ = 0 ± + (Z ± - Z)Vx + + [(z - z~)pj -T- Z+hlPl]~w T- 

g 2 3"  b.Jw. ,:---0 (2.4) + 2 

where the following notation has been used (N will also be used to 
indices) 

act = ~ I ~ X ~ ,  a ,  = ~ctact = ictb~, b,  = ~ctb~ = aaV 

2z ° (2.5) Zj = Zj ,Zj+I ; + Zj+I, 

Y.,=Y. (l<j or I>j:I, jEN)  
I 

r ,  = [Ivmllj, v . .  = detGm/detGo (m,n = 1,6,2) (2.6) 

In the elements of the matrix Fj of the averaged stiffnesses of the jth layer, Go denotes the diagonal 
minor 3, 4, 5 in the matrix Gj, and G m is the bordering minor obtained by adding the mth row and nth 
column to Go. In the special case of monoclinic anisotropy (relative to the exposed surfaces) in the layer 
the stiffness formulae become simpler: "/m~ = g,,,n -gm3g3n/g33. 

The displacements are independent of the layer number and satisfy the system of equations 

act ( D  I ) u  - b a (D 2)w + X~ - x~  = 0 

- a ,  (D 2)u + [p,3t 2 + b, (D 3)]w = O + - o-  + V(z+'r + - z-'r-) (2.7) 

Zj+I Zj+I 

Dk = E  J zk-'rjaz, P . - - Z  f pjaz (2.8) 
J zj J zj 

When the layers are arranged asymmetrically, the classical bending (D3) and membrane (D0 stiffnesses 
are supplemented by mixed membrane-bending integral stiffnesses of the packet (D2 ~ 0). Note that 
the existence of monoclinic anisotropy has no effect on the kinematic relations and other equations 
for first-order terms (s = 1) (apart from homogeneous equations (2.7)), but total anisotropy results in 
a violation of Kirchhoff's relations for them (the effect of transverse shear strains [18]). 

denote the entire set of 
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3. A P A C K E T  OF (p, 0 ) - L A Y E R S  

In this case the materials are stiffer in the longitudinal direction and relatively soft in the transverse 
direction. W h e n p  = 1 the relations for the principal terms s = 0 of Eqs (1.1)-(1.4) are the same as in 
the (0, 0)-model, but the construction of the matrix of averaged stiffnesses in the j th layer is different. 
For Fj we obtain the series 

r j = r ;  + .. (3.1) 

and must replace Fj in Eqs (2.2)-(2.8) by Fj*. Here 

Y J,,, = g~,n (3.2) 

Even though there are now short and slow transverse waves, the characteristic timescale correspond- 
ing to x = 0 is unchanged. 

Note that even when s = 0 the case p />  2 yields a system of equations with inseparable coordinates 
x and z, i.e. the recurrence in relations (1.1)-(1.4) is lost. 

Note. The loss of recurrence is an effect of the transverse shear strains. For example, the situation is not improved 
by putting 

Gin,, = O(eP) (m = 4,5), G3n = O(1 ) (3.3) 

Nor is it any better with monoclinic anisotropy or orthotropy. But relations (2.2)-(2.8) do not change at all if we 
confine ourselves to the case of high compliance to transverse tension-compression 

Gin, = O(1) (m = 4.5), G3, = O(e p) (3.4) 

and all we need do is select the appropriate matrix Ff from (3.1). 

We will now consider the kinematic relations for s = 1. I fp  = 1 we have 

w' = wl(x,t), u'  = u~(x , t ) -  zVw' + A" i "t o -G: 'y°dz  (3.5) 
0 

= ~_t'345 ~ = = ~ . A = G 0  I, G.  "-'~162~, 'Y (£11,YI2,£22) r,  "t* (0"Ol"O~2z)T 

where A' and G" denote the matrices A and G.  with the first rows deleted and the remaining rows 
transposed. In the case of monoclinic anisotropy G.  = 0 and A12 = AI3 = 0. The deflection is clearly 
the same in all layers and the longitudinal displacements depend on the number of the layer. The 
longitudinal shear strains are never zero, so that to a first approximation this always differs from Kirch- 
hoff 's kinematic model. 

For contrasting stiffnesses (3.4),p = 1, 2 one must put x. = 0 in formula (3.5) and replace A' by the 
matrix A" (obtained by deleting the first column as well). We again obtain Kirchhoff's kinematic relations 
in the case of monoclinic anisotropy. 

In case (3.4) p = 3 the relations for s = 1 change and the transverse tension--compression stresses 
make a substantial contribution 

z z 
wl=wl (x , t )+g3] l  0 u 1 ~z.zdz, = u~(x , t ) -  S Vw I + A"G'~/°dz 

0 0 

The simpler anisotropic case has kinematic relations of the same type. 
Finally, the case (3.3) and p = 1 yields relations of the form (3.5) if again we use the matrix A", the 

vector "t. = (~13, a23) r, and replace G '  by the matrix 

G *  = G .  - g 3 3  g31,g36,g32)" 
43 

The simplifications to monoclinic anisotropy gives G** = 0, but leaves the dependence on the shear 
stresses x.. 
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4. A PACKET OF (0, q ) - L A Y E R S  

This corresponds to considerably greater compliance of the layers in the longitudinal than the transverse 
direction. Equations (2.1)-(2.8) hold for the principal terms s = 0 for the following values 

x = - g [ 2 ,  I.t = - 4 - q ,  ~ . = - 3 - q  

with averaged stiffnesses (3.2) in the layers. There is no change in the order of the stresses. 
Kirchhoff's kinematic relations are preserved up to the term of order q in the asymptotic series of 

the displacements, and up to the (q + 1)th term in the case of monoclinic anisotropy. 
All the relations (2.1)-(2.8) still hold for the sum of terms s = 0.1 . . . . .  q (q + 1) with limiting error 

O(l?.q+l)(o(gq+12))  if the complete stiffness matrix F of formula (3.1) is used in those equations. 

5. A PACKET OF (p, q ) - L A Y E R S  

For a packet of (q + r, q) layers with r = 1 i fp  - q = r > 0 we obtain 

x =-q /2 ,  p. = ~ el, L = - 3 - q  

~¢ = -2 -q  (11, 12, 22), ~¢ = -1-q  (13, 23), ~ = --q (33) 

with the same relations (2.1)-(2.8) for the principal terms s = 0. 
If r ~> 2, because of the loss of recurrence the variables x and z cannot be separated as in the case of 

(r, 0)-layers. 
The model for a packet of (p, p + r)-layers with q - p = r > 0 is similar to that for (0, r)-layers with 

new scale indices 

x = -(p + r)/2, ~ = - 4 - p - r ,  ~, = - 3 - p - r  

~¢ = - 2 - p ( l l ,  12, 22), ~ = - l - p  (13, 23), ~¢=-p (33) 

and relations (2.1)-(2.8) for the principal terms. 

6. C O M B I N E D  PACKETS 

We have seen that a packet of (0, 0)- and (1, 0)-layers in the principal part (s = 0) is described by 
Kirchhoff's relations (2.1) and Eqs (2.2)-(2.8) for displacements and stresses of the same order and in 
one timescale. All that is needed is to choose the appropriate averaged stiffness matrices in each layer 
according to (3.1) and (3.2). A group of layers of this kind is called a K-packet, or Kirchhoff-type 
longitudinally rigid layers. 

If (p, 0)-layers (p I> 2) are included in the packet it is impossible to obtain an averaged two-dimensional 
model and one must analyse the full three-dimensional problem. 

Adding (0, q) or (p, q)-layers, which satisfy the corresponding two-dimensional theories of similar 
packets (apart from (q + r, q)-layers, r i> 2), to a K-packet requires a new analysis because the orders 
of the limits of  the quantities for the models of each type are different. 

We will investigate the important practical case where the supporting K-layers lie on the edge of  the 
packet with (p, q)-layers inside, where p ~< q so that the packet operates coherently in a transverse 
direction [6, 7, 11]. 

7. T H E  CASE OF A (0, q ) - F I L L E R  

N v- denotes the set of indices corresponding to the numbers of the K-layers next to the face z = z ~, 
N o is the set of numbers of the layers of the filler (q/> 1) and z- < z + are the coordinates of the interfaces 
between the peripheral layers and the filler. In this case the asymptotically principal parts (s = 0) of  
the displacement and stress fields in the K-layers satisfy relations (2.1)-(2.4). For each group of K-layers 
the summation formulae in (2.3) and (2.4) must be chosen from the adjacent face and within the indices 
of the given group (that is, for l , j  ~ N + Y~+_ is taken in (2.5)). The averaged two-dimensional equations 
have the form (2.7), where 

D , -  D~ + D~ (7.1) 
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For displacements in the layers of the fillerj e N O Eqs (2.1) are again sa.tisfied, but with a possible change 
in the structure and orders of the stresses. For longitudinal stresses o~13 (Eqs (2.2) are preserved (with 
average layer stiffnesses ~'mn = gmn), but with order × = q - 2; for transverse stresses we obtain 

• 0 O~ = x~, × = - 1  (7.2) 

= + r z -  z j  0 2 T- ~.±ht](pj3 , w -  Vx0), x = 0 (7.3) 

xao = xa± + [ aa (D~)u -  ba(D~)w] (7.4) 

(y~) = (y± + V ( Z + , r +  + --  + 2 - z~a'0) + [9,b, + b.(D~:)lw + a.(D~)u (7.5) 

E ° - Y . ( I > j  or l < j :  I, j E N  O) 
l 

where p-: denotes density integrals in the K-layers. 
In the next iteration (s = 1) the displacements in the K-layers can take the form (3.5), whereas the 

displacements in the filler satisfy Kirchhoff's relations. However, because the order of the limits changes, 
the stresses are completely different. 

Note that the internal SSS of layers of the filler can be expressed algebraically in terms of the compon- 
ents (and operators) of the SSS of the supporting layers, and does not contain any additional arbitrariness 
for describing the boundary conditions. This is reminiscent of the behaviour of an elastic liner between 
absolutely rigid surfaces [19, 20]. 

8. A F I L L E R  OF (1, 1 + q ) - L A Y E R S  

The only difference in the principal part (s = 0) from the previous case is that the formulae for the 
longitudinal stresses contain an extra term (of the same order) 

) 
t~Jl~ = X o ~ ( F / ) u  ° + 8ct~'r o, × = - 2 + q  

80 = (g30, g4o, gso)(A , )r  (0 = 1,6, 2 ~-> al3 = 1 l, 12, 22)  

9. A F I L L E R  OF T H E  F O R M  (2, 2 + q) 

In the previous two cases, if the displacements are independent of the layer number, the longitudinal 
displacements in the K-layers will be piecewise-linear functions of the thickness 

x = 0 ,  ~t = - 4 ,  ~ , = - 3  
(9.1) 

Uo ~ = u ( x , t )  - + - z v w ,  w ° = w(x,t)  

and depend on the group to which the layer belongs (the expression for the deflection is unchanged). 
Relations (2.2)-(Z4) are preserved, the only difference from Section 7 being that the characteristic 
longitudinal components of displacements u -+ for each group of K-layersj ~ N -+ are permuted. 

There is a more substantial change to the system of averaged equations 

• - ± - 

- a , (D~)u  + - a , (D~)u-  + [p,3 2 + b,(D 3)]w = o + - o -  + V(z+'r + - z- ' t -  ) (9.2) 

" r ° = A o l ( u + - n - ) ;  A~=Y.hyA ~, j ~ N  ° (9.3) 

The first four equations (_+; ¢t = 1, 2) in (9.2) correspond to two problems of a generalized plane stressed 
state in peripheral K-groups of layers; in addition to the tangential stresses on the faces of a packet, 
there are terms (9.3), reminiscent of a Winkler-Fuss medium [19, 21] with total compliance matrices 
A' (similar to (3.5)). 

The last equation in (9.2) corresponds to the generalized problem of the bending of the entire packets 
as a whole. Here  the filler participates in formation of the density integral. 
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The deflection in the filler is governed by formula (9.1), and the longitudinal displacements and stresses 
will take the form 

o = u+(x,t)+[(z _ z~)A~ :1= ~°htA ~],r o - zVw uj 

= = - 3  + q 

The transverse stresses in the filler are given by the formulae÷(7.2) and (7.3), but the stresses (7.4) 
and (7.5) on the interfaces between K-layers and the filler z = z~ change only due to the substitution 
of the stress x ° from (9.3). 

The relations for the energy of the SSS of a packet obtained by integrating Eqs (9.2) with appropriate 
coefficients over the thickness as follows: 

% ' = ~ + ~ ,  ~---ff+~r,  (..)" - b,(..) 

• : = ÷ -o-)w" + 

@= J~.tu.)  Q~(u x) +(M+. +M,~)O'.+(P.+ +P~)w'.dl (9.4) 
Ofl 

1 o + ÷ 

A t .  1 

Here 

Zj+l zj+l 

M +- (Qt~fJ, o~) =-'- Y I (l,z)a£~ dz, Q ~ -  Y f ~  dz= (9.5) 
j E N  ± z j  j ~ N + , N  - z j  

+ + 

Pn =- Q,,z. +~x( M+ +M;) 

where ~ is the power of the surface load, ~ is the integral of the power flow across the end of the 
packet, %, ~;, ~ are the total, kinetic and potential energies of the packet, Q,~I3, M,~I3 are the integral 
stresses and moments in cross-sections of the packet generated by longitudinal stresses (Qn, Q~, Mn, 
Me are the projections of these stresses and moments onto the normal and tangential directions to 0f2), 
Q,,~ are transverse stresses (Q,~ is the transverse stress in a section with normal n _1_ ~f~) and P,~ is the 
transverse Kirchhoff stress. 

Formulae (9.4) and (9.5) extend the classical relations of the theory of plates to the case of contrasting 
packets. By virtue of the energy relations (9.4) we know that the natural boundary conditions at the 
ends of the packets are either given displacements or angles of rotation for K-layers 

or integral stresses and moments 

+ ± 0, ='-3,w, w (9.6) U ~ ,  14, c , 

Qi~,, Q~, M,, I],, (9.7) 

or combination of the two. The initial conditions may be given only in the deflection: w(0, x), ~tw(0, x), 
x ~ .  

If we now consider a (3.3 + q)-filler, the displacements and stresses for the peripheral K-layers keep 
the form (9.1), (2.2)--(2.4); but the components x ° must be removed from Eqs (9.2). 

The deflection in the fillerj e N °, as before, is independent of z, while the longitudinal displacements 
and stresses are piecewise-linear functions ofz. 

In order to determine these components, we now need to consider two iterations s = 0.1. The resulting 
lengthy expressions will not be given here. 
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10.  C O N C L U S I O N  A N D  R E S U L T S  

The existence of contrasting directions in anisotropic layers leads to a substantial change in the SSS 
of a packet. Non-classical situations arise in (p, q)-layers withp > q. Whereas averaged two-dimensional 
long-wave models containing classical kinematic relations for the principal term s = 0 are obtained for 
(q + 1, q)-layers, non-classical polynomial representations (as functions of the transverse coordinate) 
are obtained for the longitudinal displacements in the next iteration s = 1. 

Thus, the first two iterations yield a model which is intermediate between the classical Kirchhoff 
description and the high-order theory of shear strains. 

Forp - q I> 2 the model gives a modified three-dimensional description of the SSS. 
Real fibrous composites (including high-quality unidirectional composites) correspond best to the 

models of (0, 0)- and (1, 0)-layers above. 
A fundamentally different situation arises in the case of a packet of several groups of contrasting 

layers (of the non-supporting layers--soft filler type). Even in the principal approximation, the systems 
of averaged equations may be of large dimensions, with different equations for each group of supporting 
layers. Also, the boundary conditions at the ends of the packet must be assigned separately for each 
non-supporting group. 

The basic operators in the various models are generalizations of the well-known operators of the 
problems of a plane stressed state and deflection, with additional Winkler terms when the filler is soft 
enough. The singular behaviour of the filler is similar to that of an elastic layer clamped between rigid 
half-spaces for which the SSS is determined algebraically, and the boundary conditions are satisfied by 
a complicated boundary layer. 

This research was done as part of the programme of the International Association for the Promotion 
of Cooperation with Scientists from the Independent States of the Former Soviet Union (INTAS 96- 
2306). 
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